Press Enter to skip to main content,
or keep pressing Tab key no navigate
TSU-logo COSET-logo

Wireless Sensor Networks Research Lab

DEPARTMENT OF COMPUTER SCIENCE

TECH 336

The Wireless Sensor Networks (WSN) Research Lab hosts a state-of-the-art experimental research facility for WSN. The test-bed facility is used for the prototyping and evaluation of developed protocol solutions and serves as a basis for the development of novel mobile context aware services and applications. The test-bed consists of wireless sensor and actuator nodes that can be organized in different network topologies and individually configured for various experiments and uses the backbone infrastructure of the Wireless Network Test-bed.

The WSN Research Lab conducts research mainly on the problems at the network and application layer of various wireless ad hoc networks including smart grid communication networks (SGCNs), wireless mesh networks (WMNs), wireless multimedia sensor networks (WMSNs), online-social networks (OSNs) and underwater acoustic sensor networks (UWSNs). Specifically, researchers are working on energy efficiency, security, privacy, routing, graph mining, key management, connectivity, node placement, clustering, coverage, fault- tolerance, and QoS problems in these networks.

Wireless Sensor Networks provide a new paradigm for sensing and disseminating information from various environments, with the potential to serve many and diverse applications. Current WSNs typically communicate directly with a centralized controller or satellite. Students trained in this Lab will know how to make use of sensor related technology to make the world work as it does. Employment in the WSN technology field includes jobs such as Wireless Communication Technician, Sensor Networking Technician, Data Communications Technician, Systems Engineer, Website Administrator, Unix System Administrator, Java programmer, Database Administrator, Database developer, Computer Artist, Website Coder, Data Management Analyst just to name a few.
WSNs have garnered a considerable amount of attention over last half a decade, primarily due to the unique applications they enable. However, there is an important constraint on the operation of such networks – the energy source at sensors. Except for environments where an energy source can be harnessed in a low cost manner, the very survivability of WSNs depends upon how energy efficient the sensors operate while performing their required functions.